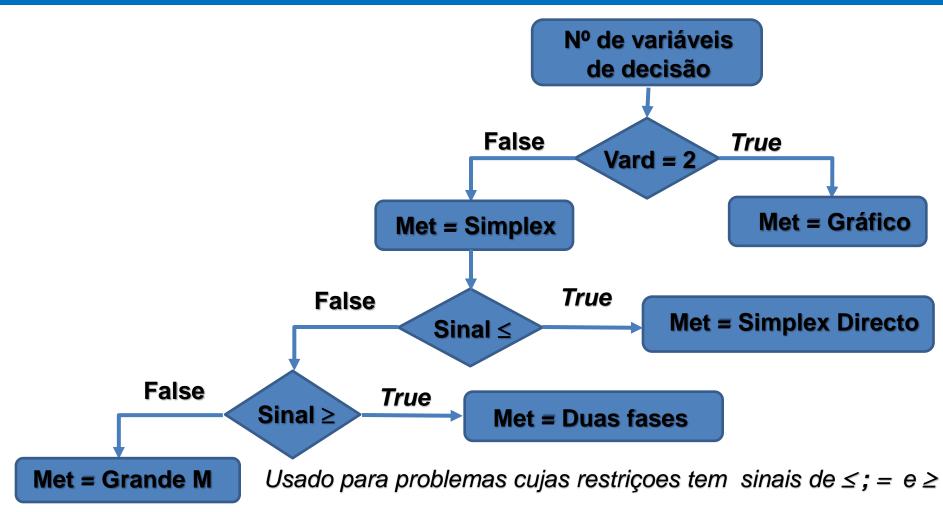


TEMA 2: Programação Linear

RESOLUÇÃO DOS PROBLEMAS DE PROGRAMAÇÃO LINEAR PELO MÉTODO DE GRANDE M

Em todos os problemas anteriores foram consideradas restrições com um único tipo de sinal de desigualdade. Nesta secção vamos considerar o caso geral dos problemas de PL com o conjunto das restrições que apresentam os sinais de \leq ; = $e \geq$ desde que não haja números negativos no segundo membro das equações das restrições.



Resolva os seguintes problemas de programação linear pelo método Simplex:

a) Maximizar
$$Z = 2x_1 + 1x_2$$

Sujeito à
$$\begin{cases} x_1 + x_2 \le 10 \\ -x_1 + x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$

b) Minimizar
$$W = 30x_1 + 30x_2 + 10x_3$$

Sujeito à
$$\begin{cases} 2x_1 + x_2 + x_3 \ge 6 \\ 1x_1 + 1x_2 + 2x_3 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

a) Problemas de Maximização

Geralmente problemas de maximização com restrições da forma ≤ , = e ≥, são resolvidos pelo método de grande M. Este método não é um novo método, mas uma modificação do simplex directo.

Passo 1. Realizar o procedimento geral e escrever o sistema na forma padrão incluindo a função objectivo;

Passo 2. Na tabela preliminar simplex, passar para básicas as variáveis artificiais, i.é, procurar eliminar a constante *M* nas colunas *ai* até chegar a tabela simplex inicial com uma solução básica inicial viável.

Passo 3. Escolher um pivô e resolver o simplex, até que todos ci sejam positivos, ter-se-à uma tabela terminal.

Maximizar
$$Z = 2x_1 + 1x_2$$

Maximizar
$$Z = 2x_1 + x_2 + 0x_3 + 0x_4 - Ma_1$$

Sujeito à
$$\begin{cases} x_1 + x_2 \le 10 & \text{\{+x_3\}} \\ -x_1 + x_2 \ge 2 & \text{\{-x_4\}} \text{ e \{a_1\}} \end{cases}$$
 Sujeito à
$$\begin{cases} x_1 + x_2 + x_3 + 0x_4 + 0a_1 = 10 \\ -x_1 + x_2 + 0x_3 - x_4 + a_1 = 2 \\ x_1, x_2, x_3, x_4, a_1 \ge 0 \end{cases}$$

Tabela preliminar simplex

Base	x1	x2	х3	x4	a1	bi	
x3	1	1	1	0	0	10	_
_	-1	1	0	-1	1	2	(2
Z	-2	-1	0	0	M	0	

Tabela simplex inicial

Base	x1	x2	хЗ	x4	a1	bi
x3	1	1	1	0	0	10
a1	-1	1	0	-1	1	2
Z	M-2	-M-1	0	М	0	-2M
	8	-11	0	10	0	-20

NI	→ ∞	M=10
IVI —	∞	V =10

Base	x 1	x2	x 3	x4	a1	bi
x3	1	1	1	0	0	10
_	-1	1	0	-1	1	2
Z	-2	-1	0	0	M	0

$$-M(-1)+(-2)=M-2$$

M

Me. Isac IIal / Aula 6/2024

1ª Iteração

Base	x1	x2	x3	x4	a1	bi
хЗ	2	0	1	1	-1	8
x2	-1	1	0	-1	1	2
Z	-3	0	0	-1	M+1	2

Base	x1	x2	хЗ	x4	a1	bi
x3	1	1	1	0	0	10
a1	-1	1	0	-1	1	2
Z	M-2	-M-1	0	M	0	-2M

2ª Iteração

Base	x1	x2	х3	x4	a1	bi
x1	1	0	1/2	1/2	-1/2	4
x2	0	1	1/2	-1/2	1/2	6
Z	0	0	3/2	1/2	M-1/2	14

Solução:
$$x_1 = 4$$
; $x_2 = 6$; $x_3 = x_4 = 0$; $a_1 = 0$; $Z_{max} = 14$

Observação: Como as variáveis artificiais não têm significado nenhum para o problema, e são iguais a zero na tabela terminal simplex, elas podem não figurar na solução.

b) Problemas de Minimização

Para os problemas de minimização com restrições da forma \leq ; = e \geq , o método de grande M tem os seguintes passos:

Passo1. Dado um problema de PL com a função objectivo Min W = $\Sigma c_i x_i$, devese converter a função objectivo em Max $Z = -Min W = -\Sigma c_i x_i$;

Passo 2. Escrever o sistema composto pela função Max $Z = -\sum_{i=1}^{\infty} c_{i}^{*}x_{i}$ e o conjunto das restrições originais;

Passo 3. Realizar o procedimento geral Mim e escrever o problema de maximização na forma padrão;

Passo 4. Realizar os passos p2 e p3 do caso de maximização. Chegada a tabela terminal simplex o valor da função objectivo será negativo, basta fazer W = -Z para obter o valor mínimo procurado W Me. Isac IIal / Aula 6/2024

Minimizar
$$W = 30x_1 + 30x_2 + 10x_3$$

Sujeito à
$$\begin{cases} 2x_1 + x_2 + x_3 \ge 6 \\ x_1 + x_2 + 2x_3 \le 8 \\ x_i \ge 0, \quad i = \overline{1,3} \end{cases}$$

Max
$$Z = -Min W = -30x_1 - 30x_2 - 10x_3$$

Sujeito à
$$\begin{cases} 2x_1 + x_2 + x_3 \ge 6 \\ x_1 + x_2 + 2x_3 \le 8 \\ x_i \ge 0, \quad i = \overline{1,3} \end{cases}$$

$$Max Z = -30x_1 - 30x_2 - 10x_3 + 0x_4 + 0x_5 - Ma_1$$

Sujeito à
$$\begin{cases} 2x_1 + x_2 + x_3 - x_4 + 0x_5 + a_1 = 6 \\ x_1 + x_2 + 2x_3 + 0x_4 + x_5 + 0a_1 = 8 \\ x_i \ge 0, \ a_1 \ge 0; \ i = 1,...,5 \end{cases}$$

Tabela preliminar simplex

Base	x1	x2	х3	x4	x5	a1	bi
_	2	1	1	-1	0	1	6
x5	1	1	2	0	1	0	8
Z	30	30	10	0	0	M	0

Tabela simplex inicial

Base	x1	x2	x3	x4	x5	a1	bi
a1	2	1	1	-1	0	1	6
x5	1	1	2	0	1	0	8
Z	30-2M	30-M	10-M	М	0	0	-6M

M = 100

-170 -70

-90 100 0

-600

Me. Isac Ilal / Aula 6/2024

1ª Iteração

Base	x1	x2	х3	x4	x5	a1	bi
x1	1	1/2	1/2	-1/2	0	1/2	3
x5	0	1/2	3/2	1/2	1	-1/2	5
Z	0	15	-5	15	0	M-15	-90

2ª Iteração

Base	x1	x2	x3	x4	x5	a1	bi
x1	1	1/3	0	-2/3	-1/3	2/3	4/3
х3	0	1/3	1	1/3	2/3	-1/3	10/3
Z	0	50/3	0	50/3	10/3	M-50/3	-220/3

Solução: $x_1 = 4/3$; $x_2 = 0$; $x_3 = 10/3$; $x_4 = 0$; $x_5 = 0$; $W_{min} = -Z_{max} = 220/3$

Resolva o problema pelo método de Grande M

$$Maximizar Z = x_1 - x_2 + 3x_3$$

Sujeito à
$$\begin{cases} x_1 + x_2 + 0x_3 \le 20 & \{+x_4\} \\ x_1 + 0x_2 + x_3 = 5 & \{a_1\} \\ 0x_1 + x_2 + x_3 \ge 10 & \{-x_5\} & \{a_2\} \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Maximizar
$$Z = x_1 - x_2 + 3x_3 + 0x_4 + 0x_5 - M(a_1 + a_2)$$

Sujeito à
$$\begin{cases} x_1 + x_2 + 0x_3 + x_4 + 0x_5 + 0a_1 + 0a_2 = 20 \\ x_1 + 0x_2 + x_3 + 0x_4 + 0x_5 + a_1 + 0a_2 = 5 \\ 0x_1 + x_2 + x_3 + 0x_4 - x_5 + 0a_1 + a_2 = 10 \\ x_1, x_2, x_3, x_4, x_5, a_1, a_2 \ge 0 \end{cases}$$

Tabela simplex inicial

Base	x1	x2	І %3	x4	x5	a1	a2	b1	
x4	1	1	0	1	0	0	0	20	
-a1-	_ 1	Δ_	<u> </u>	_ Δ _	0_	_ 1	_0_	5	_
a2	0	1	i H	0	-1	0	1	10	Maz {-M}
Z	-M-1	-M+1	-2 <mark>M-3</mark>		M	0	0	-15M	M=10
	-11	-9	-23	0	10	0	0	-150	1

1ª Iteração

Base	x1	x2	хЗ	x4	x5	a1	a2	b1
x4	1	1	0	1	0		0	20
хЗ	1	0	1	0	0		0	5
a2	-1	1	0	0	-1		1	5
Z	M+2	-M+1	0	0	М		0	15-5M

2ª Iteração

Base	x1	x2	хЗ	x4	х5	a1	a2	b1
x4	2	0	0	1	1			15
хЗ	1	0	1	0	0			5
x2	-1	1	0	0	-1			5
Z	3	0	0	0	1			10

Solução:
$$x_1 = 0$$
; $x_2 = 5$; $x_3 = 5$; $x_4 = 15$; $x_5 = 0$; $Z_{max} = 10$

CONCLUSÃO

- **1.** Um problema de programação linear em que as restrições aparecem com sinais diferentes, isto \acute{e} , \leq ; = $e \geq$, \acute{e} resolvido usando o método de grande M;
- 2. O valor de M grande escolhido, deve ser maior que os temos livres da função objectivo;
- **3.** Um problema de maximização ou de minimização, com sinais diferentes nas restriçoes, pode ser facilmente resolvido penalizando com um M negativo (problema de maximização) ou um M positivo (problema de minimização.
- **4.** A retirada da base de uma variável artificial em uma iteração, significa que na iteração seguinte essa variável pode ser não aparecer.

SUMÁRIO

Resolução de problemas de programação linear pelo método simplex

O método de Grande M

TPC: Mulenga, página 37, Exercício 2.18. Página 38, Exercício 2